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Hastelloy C-22

Introduction

Hastelloys are noted for their relatively high strength in corrosive environments at.high
temperatures. The C-22 is a versatile nickel-Chromium-molydenum-tungsten alloy with improved
resistance to both uniform and localized corrosion. The C-22 also exhibits superior weldability
and is used as overalloy filler wire and weld overlay consumables to improve resistance to
corrosion. In this investigation, flow behavior of Hastelloy C-22 was studied by conducting
compression tests at various temperatures and strain rates. Constitutive relations were
determined from the flow behavior, and a dynamic material modeling for this alloy was
performed. Thus, the optimum processing condition in terms of temperature and strain rate was
determined.  Microstructural changes during high temperature deformation were also
characterized to aid process design engineers to select processing conditions in terms of resulting
microstructure.

Experimental Procedure

The material used in this investigation was Hastelloy C-22 wrought bars in annealed
condition. The composition (in wt%) is as follows

C Co Cr Fe Mn Mo Ni P S \% w Si
003 202 210 42 .26 133 BAL .008 .002 .13 3.1 027

The typical microstructure of the as-received material consists of a uniform equiaxed grain
with an average size of 96 uym (ASTM 3.5) as shown in Figure 1. Cylindrical compression test
specimens with a diameter of 12.7 mm and a height of 15.9 mm were machined from the bars.
Isothermal compression testing was conducted on an MTS testing machine under vacuum
environment. The test matrix was as follows:

Temperature, C (F): 950 (1742), 1000 (1832), 1050 (1922), 1100 (2012), 1125 (2057), 1150

. (2102), and 1200 (2192);
Strain rate, s-1: 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5 and 20.

Load and stroke data from the tests were acquired by a computer and later converted to
true stress-true strain curves. Immediately after the comnpression test, the specimens were
quenched with forced helium gas in order to retain the deformed microstructure. Longitudinal
and transverse sections of the specimens were examined using optical microscope. The
photomicrographs presented were taken from the center of the longitudinal section of the
specimens.

Results

Table 1 is a list of the figures, test conditions and the observed microstructures. The true
stress-true strain flow curves with the corresponding deformed microstructure are shown in
Figure 2 to Figure 57. True stress versus strain rate was plotted in log-log scale in Figure 58 at a
true strain of 0.55. The slope of the plot gives the strain rate sensitivity m, which is not constant
over the range of strain rate tested. Log stress vs. 1/T at the same true strain is shown in Figure
69. A processing map at this strain was developed for the Hastelloy C-22 alloy and is shown in
Figure 60. The optimum processing conditions from the map can be obtained by selecting the
temperature and strain rate combination which provides the maximum efficiency in the stable
region. This condition is approximately 1050 C and 0.001 s-1 for this material.
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Table 1. List of figures, testing conditions and microstructural observations for Hastelloy C-22

-

Figure | Temperature { Strain Rate Microstructure Page
No C(F) s-1 Optical Microscopy No
1 As received - Uniform large equiaxed grains of ~96um 4
(ASTM 3.50) with some twinnigi

2 950(1742) 0.001 Elongated deformed grains with ~10% 5
necklacing. Slip bands and twinning are present.

3 950(1742) 0.01 6

4 950(1742) 0.05 Elongated deformed grains with ~2% necklacing, | 7
slip bands and twinning are present.(twins;
showed a large degree of deformation)

35 950(1742) 0.10 Same as above, but the twin boundaries show the 8
presence of necklacing.

6 950(1742) 0.50 9

7 950(1742) 1.0 Elongated grains with ~10 % of small 10
recrystallized grains. Some necklacing at the
twin boundaries and slip bands are present.

8 950(1742) 5.0 11

9 950(1742) 20.0 Elongated grains with ~15 % of small| 12
recrystallized grains (~9 um). Some necklacing
around the elongated grains and twin boundaries.
Slip bands are also present.

10 1000(1832) 0.001 Elongated grains with ~20 % of recrystallized| 13
grains (~25 pum). Some recrystallization at the
twin boundaries. Slip bands are not present.

11 1000(1832) 0.01 Elongated grains with ~15 % of recrystallized] 14
grains. Some of the new grains show twinning.
Slip bands and extensive necklacing at twin and

rain boundaries are present.

12 1000(1832) 0.05 Same as above, but a higher proportion of| I3
recrvstallization is observed.

13 1000(1832) 0.10 16

14 1000(1832) 0.50 17

15 1000(1832) 1.0 Elongated grains and ~32% of equiaxed| 18
recrystallized grains. Slip bands are present and
recrystallization at twin boundaries is also
observed.

16 1000(1832) 5.0 19

17 1000(1832) 20.0 Some elongated grains and a large proportion of| 20
equiaxed recrystallized grains, some slip bands
are also present.

18 1050(1922) 0.001 ~98% of equiaxed recrystallized grains, some of| 21
them show the presence of twinning.

19 1050(1922) 0.01 22

20 1050(1922) 0.05 Some elongated deformed grains and equiaxed| 23
recrystallized grains (~80%) with the presence of
twinning

21 1050(1922) 0.1 24

22 1050(1922) 0.5 25
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23 1030(1922) 1 Some elongated deformed grains and equiaxed| 26
recrystallized grains (~75%) with the presence of
twinning.

24 1050(1922) 5 27

25 1050(1922) 20 Some elongated deformed grains and equiaxed| 28
recrystallized grains (~63%) with the presence of
twinning.

26 1100(2012) 0.001 Equiaxed recrystallized grains with an average| 29
grain size of 25 um. Grain size is not uniform.

27 1100(2012) 0.01 Same as above 30

28 1100(2012) 0.05 : 31

29 1100(2012) 0.1 Equiaxed recrystallized grains with a duplex| 32
size, average grain size 18 pym. A small
proportion of large equiaxed grains (2-3%) with
a size of ~70pm. Twinning of the new grains is
present.

30 1100(2012) 0.5 33

31 1100(2012) I Equiaxed recrystallized grains with a duplex| 34
size. A small proportion of large equiaxed grains
(~2%). Twinning of the new grains is present.

32 1100(2012) 5 35

33 1100(2012) 20 Equiaxed recrystallized grains.with a relatively| 36
uniform grain size (~19 um).

34 1125(2057) 0.001 Large equiaxed recrvstallized grains, some show | 37
twinning

35 1125¢2057) 0.01 38

36 1125(2057) 0.05 Same as above, but smaller grain size. 39

37 1125(2057) 0.1 40

38 1125(2057) 0.5 41

39 1125(2057) 1 Same as above 42

40 1125(2057) 5 43

41 1125(2057) 20 Same as above 44

42 1150(2102) 0.001 Large equiaxed recrystallized grains with a size| 45
range. The larger grains show the presence of a
substructure. Twinning is also evident.

43 1150(2102) 0.01 Large equiaxed recrystallized grains with| 46
extensive twinning. There is also a small
proportion of larger grains.

44 1150(2102) 0.05 ' 47

45 1150(2102) 0.1 Equiaxed recrystallized grains showing some| 48
twinning.

46 1150(2102) 0.5 ' 49

47 1150(2102) 1 Same as above 50

4R 1150(2102) 5 51

49 1150(2102) 20 Same as above, but smaller grain size 52

50 | 1200(2192) 0.001 Equiaxed recrystallized grains with an average| 353

rain size of 80 pm. Twinning is also present.

51 1200(2192) 0.01 54

52 1200(2192) 0.05 Large equiaxed recrystallized grains with an| 355
average grain size of 43 um. Twinning is also
present in the microstructure.
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53 1200(2192) 0.1 Same as above, but with smaller grain size. 56
34 1200(2192) 0.5 Same as above 57
55 1200(2192) 1 58
56 1200(2192) 5 59
37 1200(2192) 20 Same as above 60

Figure 1. As-received microstructure of Hastelloy C-22
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Figure 2. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 950 C and 0.001 s~ I
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Figure 3. True stress-true strain curve, 950 C and 0.01 s-1.
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Figure 4. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 950 C and 0.05 s°1.
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Figure 5. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 950 C and 0.1 s°1.
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Figure 6. True stress-true strain curve, 950 C and 0.5 s-1.
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Figure 7. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 950 C and 1 sl
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Figure 8. True stress-true strain curve, 950 C and 5 s-1.
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' Figure 9. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 950 C and 20 sl
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Figure 10. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1000 C and 0.001 sl
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Figure 11. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 1000 C and 0.01 sl
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Figure 12. True stress-true strain curve, 1000 C and 0.05 s-1.
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Figure 13. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1000 C and 0.1 sl
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Figure 14. True stress-true strain curve, 1000 C and 0.5 sl
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Figure 15. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1000 C and 1 sl
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Figure 16. True stress-true strain curve, 1000 C and 5 s-1.
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Figure 17. True stress-true strain curve and an optical micrograph from the center of the
( compressed sample cut through the compression axis, 1000 C and 20 s™1.

20




Hastelloy C—22 1050 C 0.001 5~
100 =
© 80 J
a
5 1
o 60 .
Q
5 1
Q 40 -1
3
| - p
'_
20 i
! |
0 " i a1 N [} " 1 " 1l i j - —e
a.0 0.1 0.2 0.3 0.4 Q.5 0.6 0.7

True Strain

Figure 18. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1050 C and 0.001 s-1.
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Figure 19. True stress-true strain curve, 1050 C and 0.01 51,
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Figure 20. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1050 C and 0.05 sl
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Figure 21. True stress-true strain curve, 1050 C and 0.1 s-1.
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| Figure 22. True stress-true strain curve, 1050 C and 0.5 s-L
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Figure 23. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1050 C and 1 sl
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Figure 24. True stress-true strain curve, 1050 C and 5 s-1.
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Figure 25. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1050 C and 20 s*1.
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Figure 26. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 1100 C and 0.001 sl
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Figure 27. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 1100 C and 0.01 s*1.
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Figure 28. True stress-true strain curve, 1100 C and 0.05 sl
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Figure 29. True stress-true strain curve and an optical micrograph from the center of the
| compressed sample cut through the compression axis, 1100 C and 0.1 s-1.
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Figure 30. True stress-true strain curve, 1100 C and 0.5 s-1.
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Figure 31. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1100 C and 1 sl
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Figure 34. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 1125 C and 0.001 sl
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Figure 36. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1125 C and 0.05 s°1.
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Figure 37. True stress-true strain curve, 1125 C and 0.1 s-1.

.’

i

i

{

40




!
Hostelloy c-22 1125¢C 0.5 s—1
275 M ¥ v L] ¥ 1 T T T T T T g
225 J
| © 1
i a
i = 175 N
! S~
i (7]
1 >
£ o128 .
@
~
= 75 .
25 .
e 1 e L i L. i L 1 i A i
‘ Q.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
i True Strain
Figure 38. True stress-true strain curve, 1125 C and 0.5 s°1.
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Figure 43.

True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1150 C and 0.01 s-1.

46

.t - —




e s e o e b ) 1. o Ry 8

True Stress (MFa)

Hastelloy C~22 1150C 0.05 s=1
160 Yy v T v T Emam v T v T
120 .
80 H .
20 .
— — Y T

0 A 1 L i
0.0 01 Q.2 0.3 0.4 Q.5 0.6 0.7
True Strain

Figure 44. True stress-true strain curve, 1150 C and 0.05 s-1.
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Figure 46. True stress-true strain curve, 1150 C and 0.5 sl

49

s

S e o st e




HostelloyC—22 1150C 1.0st
) 300 —————— T
—~ 230 .
o
Q
= 1
~—r
# 160 .
et
= -
7]
o
c 9 -
b
20 .
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7

True Strain
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50

s




—.—t o moa-

o . .

True Stress (MPa)

250

150

Hostelloy C—22 1150C 5.0 s—!
350 T T T - =T v L — LA
]
-
" 1 a1l L i N B 1 — [
0.0 0.1 0.2 0.3 0.4 Q.5 0.6

True Strain

Q.7

Figure 48. True stress-true strain curve, 1150 C and S s'L.

7

51

-

e e T ——



Hastelloy c-22 1150C 20.0 s
450 ¥ T -r T T T L T T

4

370 J
5

= 290 _
S~
[4p)
[ép]

210 -
'

U) L
[1})

2 130 .
|__

50 .

1 1 A A i L 1 _
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
True Strain

Figure 49. True stress-true strain curve and an optical micrograph from the center of the

compressed sample cut through the compression axis, 1150 C and 20 sl
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Figure 50. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1200 C and 0.001 sl

53

b7




[

e . ot i

e ol
N e A e s A e ——

Hastelloy C-22 1200C 0.01 s-!
85 e e e R
} ]
—~ 65} ]
o
o
=
~
? 45 4
g
U
L
S 25 i
—
L
°[ ]
1 . L M 1 A 1 n L — I N
a.0 Q.1 0.2 0.3 0.4 0.5 0.6 0.7
True Strain

Figure 51. True stress-true strain curve, 1200 C and 0.01 s-1.
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Figure 52. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1200 C and 0.05 s°1.
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Figure 55. True stress-true strain curve and an optical micrograph from the center of the
l compressed sample cut through the compression axis, 1200 C and 1 s-1.
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Figure 56. True stress-true strain curve, 1200 C and S sl
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Figure 57. True stress-true strain curve and an optical micrograph from the center of the
compressed sample cut through the compression axis, 1200 C and 20 s°1.
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Figure 60. Processing map of Hastelloy C-22 at a true strain of 0.55.
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. Summary

Compression tests have been performed on Hastelloy C-22 over a wide range of
temperatures and strain rates. The experimental conditions used in this work are representative of
those used in metaiforming practices. From the stress-strain curves, the flow behavior was
characterized and a processing map indicating the oFtimum processing condition was generated.
This condition is approximately 1050 C and 0.001 s-!.

The deformed microstructures were characterized from the quenched specimens by optical
microscopy and are presented for selective testing conditions together with the stress-strain
curves.

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on.flow behavior of various
important engineering materials in the temperature and strain rate regime commonly used in
metalworking processes. The data are valuable in design and problem solving in metalworking
processes of advanced materials. Microstructural changes with temperature and strain rates are
also provided in the Bulletin, which helps the design engineer to select processing parameters
leading to the desired microstructure.

The data can also be used to construct processing map using dynamic material modeling
approach to determine stable and unstable regions in terms of temperature and strain rate. The
temperature and strain rate combination at the highest efficiency in the stable region provides the
optimum processing condition. This has been demonstrated in this Bulletinn In some
metalworking processes such as forging, the strain rate varies within the workpiece. An analysis
of the process with finite element method (FEM) can ensure that the strain rates at the processing
temperature in the whole workpiece fall into the stable regions in the processing map.
Furthermore, FEM analysis with the data from the Atlas of Formability can be coupled with
fracture criteria to predict defect formation in metalworking processes.

Using the data provided by the Atlas of Formability, design of metalworking processes,
dynamic material modeling, FEM analysis of metalworking processes, and defect prediction are
common practice in Concurrent Technologies Corporation. Needs in solving problems related to
metalworking processes can be directed to Dr. Prabir K. Chaudhury, Forming Department
Manager of Concurrent Technologies Corporation, by calling (814) 269-2594.
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